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[571 ABSTRACT

A lossless image compression encoder/decoder system hav-
ing a context determination circuit and a code table genera-
tor. The image compressor uses the context of a pixel to be
encoded to predict the value of the pixel and determines a
prediction error. The image compressor contains a context
quantizer that quantizes the context of pixels. The image
compressor counts the error values for each quantized
context and uses these counts to generate context-specific
coding tables for each quantized context. As it encodes a
particular pixel, the encoder looks up the prediction error in
the context-specific coding table for the context of the pixel
and encodes that value. To decompress an image, the decom-
pressor determines and quantizes the context of each pixel
being decoded. The decompressor uses the same pixels as
the compressor to determine the context. The decompressor
retrieves from the context-specific coding table the error
value corresponding to the coded pixel. The decompressor
uses a predictor to predict the value of the pixel based on the
context and adds the error value to determine the actual
value of the pixel. In one embodiment the image compressor
uses an alphabet extension, embedded in its context model,
in specific low gradient contexts to reduce the redundancy of
the encoding.

Other systems and methods are disclosed.

46 Claims, 15 Drawing Sheets
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SYSTEM AND METHOD FOR LOSSLESS
IMAGE COMPRESSION

TECHNICAL FIELD OF THE INVENTION

The invention relates generally to image compression,
and, more particularly, to low complexity lossless and
near-lossless compression having context-specific Huffman
codes.

BACKGROUND ART

The use of compression algorithms for efficient data
storage and communication has become a key component in
most digital imaging systems. In many applications a reduc-
tion in the amount of resources required to store or transmit
data is crucial, so that compression can be viewed as an
enabling technology. Image compression algorithms are
broadly classified into lossy (imreversible) schemes, for
which the original pixel intensities cannot be perfectly
recovered from the encoded bit stream, and lossless
(reversible) schemes, for which the coding algorithms yield
decompressed images identical to the original digitized
images. The latter, in general, are required in applications
where the pictures are subjected to further processing, e.g.
for the purpose of extraction of specific information. Most
lossy compression techniques are designed for the human
visual system and may destroy some of the information
required during processing. Thus, images from digital radi-
ology in medicine or from satellites in space are usually
compressed by reversible methods. Lossless compression is
generally the choice also for images obtained at great cost,
for which it may be unwise to discard any information that
later may be found to be necessary, or in applications where
the desired quality of the rendered image is unknown at the
time of acquisition, as may be the case in digital photogra-
phy. In addition, lossless may be preferred over lossy in
applications where intensive editing or repeated
compression/decompression are required: the accumulation
of error due to a lossy iteration may become unacceptable.

Gray-scale images are considered as two-dimensional
arrays of intensity values, digitized to some number of bits.
In most applications 8 bits are used, although 12 bits is
customary in digital radiology. Color images, in turn, are
usually represented in some color space (e.g.. RGB, YUV,
LAB). in which each component is a gray-scale image.
Thus, the tools employed in the compression of color images
are derived from those developed for gray-scale images and
our discussions will generally focus on the latter. It should
be noted though that the combination of these tools in the
case of color should take into account the possible correla-
tion between color planes (e.g., in an RGB representation).
Lossless image compression techniques often consist of two
distinct and independent components: modeling and coding.
The modeling part can be formulated as an inductive infer-
ence problem, in which an image is observed pixel by pixel
in some pre-defined order (e.g., raster-scan). At each time
instant i, and after having scanned past data x’=X,X,. " " X,,
one wishes to make inferences on the next pixel value X,
by assigning a conditional probability distribution to it.
(Notice that pixel values are indexed with only one
subscript, despite corresponding to a two-dimensional array.
This subscript denotes the “time” index in the pre-defined
order.) In a sequential formulation, this distribution p(-Ix’) is
learned from the past, and the goal in the long run is to
maximize the probability assigned to the entire sequence
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where x° denotes the empty string. In the coding part of the
scheme, this probability assignment could be used sequen-
tially by an_arithmetic coder to obtain a total code length of
[—1og P(x™) 1 bits (hereafter, logarithms are taken to the base
2). Arithmetic coding is described in J. Rissanen and G. G.
Langdon, Jr., “Universal modeling and coding,” /EEE
Trans. Inform. Theory, vol. IT-27, pp. 12-23, January 1981.
Since the conditional probability used to encode x,,,
depends only on X', it is available to the decoder as it
decodes the past string sequentially. Alternatively. in a
two-pass scheme the conditional distribution can be learned
from the whole image in a first pass and and some descrip-
tion of it must be sent to the decoder as header information.
In this case. the total code length includes the length of the
header. Yet, both the second encoding pass and the (single-
pass) decoding are subject to the same sequential formula-
tion.

In state-of-the-art lossless image compression schemes,
the probability assignment is generally broken into the
following components:

a. A prediction step, in which a deterministic value &, is

guessed for the next pixel x,,, based on a substring
X; X, ' X, of the available past sequence X', where v
denotes the order of the predictor.

b. The determination of a context on which x,,, occurs.
Again, this context is a function of a past subsequence
XyXizs Ry fOr sOme integer m.

c. A probabilistic model for the prediction residual (or
error signal) e, ,=X;.,—%,,,. conditioned on the context
of x;,;.

FIG. 1 is a block diagram of a typical lossless image
compression scheme. The shaded areas 101 and 101’ repre-
sent the scanned past sequence x’, on which prediction and
context modeling are based, while the black dots 103 and
103 represent the pixel location currently encoded. An
image 105 is input to a modeler 107. Inside the modeler 107,
the image is input to a predictor 109. Based on the sequence
101 that precedes the pixel 103 a predicted value for the
pixel 103 is guessed, &,,,. This predicted value is subtracted
from the actual value to obtain the error value (e, =X, ,~
£,+1)- The errors are then modeled in an exror modeler 109.
The probability distribution of the error values and the error
values for individual pixels are fed to a coder 111 to produce
an output compressed bitstream 113.

The best available published compression ratios corre-
spond to the scheme discussed in M. J. Weinberger, J.
Rissanen, and R. Arps, “Applications of universal context
modeling to lossless compression of gray-scale images,”
Submitted for publication in IEEE Trans. Image Processing,
which is inspired on the ideas of umiversal modeling, as
reported in the comparative tables of results in Weinberger
et al. In that method, the context for x,,, is built out of
dynamically varying guantized versions of the differences
X, ~X,; where x,; and x;, are the values of two adjacent pixels
within a fixed causal template (with respect to the scanned
direction) which is used as the maximum search space for
the context within x'. The degree of quantization is deter-
mined dynamically with a complex calculation based on an
intricate database of symbol occurrence counts. The variable
sizes of the conditioning contexts are optimized based on the
concept of stochastic complexity in order to prevent “over-
fitting” the model. In principle, larger contexts better capture
the inherent “structure” of the data, as they imply more
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skewed distributions for the prediction residuals, which
results in a better fit.

However, choosing a model whose complexity is unnec-
essarily large (i.e., a model for which the same fit can be
achieved with smaller contexts and, hence, with fewer
parameters) negatively affects performance. These redun-
dant parameters imply a “model cost,” which in a sequential
scheme can be interpreted as capturing the penalties of
“context dilution” occurring when count statistics must be
spread over too many contexts, thus affecting the accuracy
of the corresponding estimates. In non-sequential (two-pass)
schemes the model cost represents the code length required
to encode the model parameters estimated in the first pass,
which must be transmitted to the decoder. The prediction
step in Weinberger et al. is accomplished with an optimized,
context-dependent linear predictor, and the modeled predic-
tion residuals are arithmetic encoded. The resulting code
length is provably asymptotically optimal in a certain broad
class of processes used to model the data.

Both the modeling and coding part of the scheme of
Weinberger et al. are of high complexity, due to the complex
underlying data structure used for prediction and context
modeling. and the required arithmetic coder. Some alterna-
tives exist which use a fixed predictor and a non-optimized
context model for the prediction residuals, with only mod-
erate deterioration in the compression ratios obtained for
some types of images (especially natural landscapes and
portraits; the deterioration is more significant for medical
and satellite images). One such technique is the version of
the Sunset algorithm which forms the basis for the JPEG
compression standard. This technique is described in U.S.
Pat. No. 4,749,983 to Langdon. entitled “Compression of
Multilevel Signals.”

However, the model used in these algorithms still requires
arithmetic coding of prediction residuals, an operation that
is considered too complex in many applications, especially
in software applications and in the very frequent case in
which decoding speed is crucial. Other alternatives have
been designed with simplicity in mind and propose minor
variations of traditional DPCM techniques (a discussion of
the DPCM technique may be found in A. Netravali and J. O.
Limb, “Picture coding: A review,” Proc. IEEE, vol. 68, pp.
366406, 1980), which include Huffman coding of predic-
tion residuals obtained with some fixed predictor. Thus,
these techniques are fundamentally limited in their compres-
sion performance by the first order entropy of the prediction
residuals. Their ability to “decorrelate” the data is reduced to
the prediction step, which in general cannot achieve total
decorrelation.

Ideally, the prediction of the value of the current pixel x,,
based on its surrounding pixels that have already been
processed should be done by adaptively learning a model
conditioned on the local edge direction, as discussed in
Weinberger et al. However, such adaptive learning is
exceedingly complex.

Nevertheless, a low-complexity edge detector is desirable
in order to approach the best possible predictors.

The seven fixed linear predictors proposed for the lossless
JPEG scheme (as described in ISO/IEC 10918-1 ITU T.81.
Digital compression and coding of continuous tone still
images—Requirements and guidelines, September 1993),
not only discards edge information that might be available in
the causal template, but produces very different compression
results depending on the selected predictor. Moreover, the
best predictor depends heavily on the image.

Accordingly. it is desirable to have an image compressor
that uses low-complexity predictors with some degree of
edge detection.
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The term “low-complexity” herein connotes an image
compression system which uses predictors based on addi-
tions and shift operations, which avoids floating point arith-
metics and general multiplications. It also implies a context
determination process with simple comparisons, fixed table
look-ups. and no updating of complex underlying data
structures. None of the above mentioned image compression
schemes based on context models achieve “low-complexity”
as defined herein.

Although optimal as a prefix code, a Huffman code may
be far from being matched to the distribution from which it
was generated, if this distribution is very skewed. At least a
one-bit code word needs to be assigned to every event, so
that the average per-symbol code length cannot approach the
entropy of the distribution whenever one event concentrates
more than half of the probability mass. This is exactly the
case in contexts representing smooth regions, for which a
prediction error value of 0 is extremely likely. For some
images, the redundancy of the corresponding Huffman code
would produce a significant deterioration of the compression
ratio. In traditional (non-conditioned) Huffman codes, this
problem is addressed through an alphabet extension in
which blocks of data is encoded as “super-symbols.” This
type of alphabet extension can be viewed as a means of
spreading the excess code length of the Huffman code over
many symbols, thus reducing the per-symbol redundancy.

It would therefore be desirable to achieve the simplicity of
Huffman coding with the modeling power of context con-
ditioning while still being able to maintain skewed distri-
butions and a per-symbol code that approaches the entropy
of the distribution.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a low-
complexity image compressor that achieves the compression
ratios of complex image compressor systems.

It is an object of the invention to provide a image
compressor that combines the benefits of Huffman coding
with contextual modeling.

It is a further object of the invention to provide an image
compressor that uses a low-complexity predictor that is
sensitive to edges.

It is an object of the invention to use local gradients to
determine the context of a pixel to be compressed.

It is an additional object of the invention to quantize the
context of a pixel to be compressed and use the quantized
contexts to create and select look-up tables for prediction
residuals.

It is another object of the invention to overcome the
minimum of one-bit per pixel limitation of Huffman coding.

The above and other objects of the invention are satisfied
by providing an image compressor that has a context
quantizer, a predictor, and a table generator that builds
Huffman tables based on the probability distribution of
errors for quantized contexts. The context is determined by
the pixels in a template that includes previously encoded
pixels. The context quantizer determines a quantized context
of a pixel to be codified. The image processor uses the
context of a pixel to be compressed to predict the value of
the pixel. The image compressor compares the predicted
values of each pixel with the corresponding actual value.
The errors are counted with respect to the particular quan-
tized context to which the pixel belongs. At the conclusion
of a first pass, the image compressor has probability distri-
butions for the emrors encountered with each quantized
context. The image compressor uses these probability dis-
tributions to create context-specific Huffman tables.
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Tn a second pass the image compressor uses the quantized
context of a pixel to be coded to look up in the Huffman table
that corresponds to the quantized context the code corre-
sponding to prediction error for the pixel. In one embodi-
ment the image compressor uses an alphabet extension,
embedded in its context model, in specific low gradient
contexts to reduce the redundancy of the encoding.

On the decompression side, the decompressor also has a
predictor and a context quantizer. The decompressor deter-
mines the context of a pixel to be decoded by looking to the
same context template as the one used by the image com-
pressor. The context quantizer then determines which Huff-
man table in which to look up the error value corresponding
to the encoded pixel. The decompressor obtains a predicted
value for the pixel, using previously decoded pixels in the
context template, and adds the error value to the predicted
value to obtain the actual pixel value.

Still other objects and advantages of the present invention
will become readily apparent to those skilled in this art from
the detailed description, wherein we have shown and
described the preferred embodiments of the invention, sim-
ply byway of illustration of the best mode contemplated by
us of carrying out our invention. As will be realized, the
invention is capable of other and different embodiments, and
its several details are capable of modifications in various
obvious respects, all without departing from the invention.
Accordingly, the drawings and description are to be regarded
as illustrative in nature, and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood by referring to the
drawings accompanying this specification in which like
numerals represent like elements. As a convention, elements
bearing a reference numeral followed by a single or multiple
apostrophes is an identical element or similar to, but a
variation of, the element bearing the numeral without an
apostrophe and any other elements with the same reference
numeral but having a different number of apostrophes.

FIG. 1 is a block diagram of a typical lossless image
compression scheme.

FIG. 2 is a block diagram of an image compressor system
according to a preferred embodiment of the present inven-
tion.

FIG. 3 is a graphic depiction of a causal template used by
the present invention.

FIG. 4 is a schematic diagram of a predictor according to
the present invention.

FIG. 5 is a schematic diagram of a control circuit pro-
ducing a control signal used by the predictor of FIG. 4.

FIG. 6 is a schematic of a second control circuit producing
a second control signal used by the predictor of FIG. 4.

FIG. 7 is a block diagram of the context quantizer and
pixel encoder of the image compressor system of FIG. 2.

FIG. 8 is a high-level block diagram of the context
determination circuit of FIG. 7.

FIG. 9 is a schematic of a gradient quantizer of the context
determination circuit of FIG. 8.

FIG. 10 is a logic diagram of quantizer for one gradient
of the gradient quantizer of FIG. 9.

FIG. 11 is a binary tree of the image compressor accord-
ing to the present invention used by the image compressor
to codify “runs” of pixels having the same error value.

FIG. 12 is a block diagram of an image decoder according
to the present invention and corresponding to the image
compressor of FIG. 2.
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FIG. 13 is a block diagram of the context quantizer and
pixel decoder of the image decoder of FIG. 12.

FIG. 14 is a block diagram showing the configuration of
a near-lossless image compressor/decompressor system of
the present invention.

FIG. 15 is a block diagram of a computer system having
an image compressor and an image decompressor according
to the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

The present invention is a system and method for lossless
compression of continuous-tone images that combines the
simplicity of Huffman coding with the compression poten-
tial of context models. The compressor of the present
invention is based on a fixed context model, but is tuned for
efficient performance in conjunction with a collection of
context-conditioned Huffman codes. The use of Huffman
coding in conjunction with context-conditioning poses
unique problems which are solved by the present invention.
On one hand, the number of possible emor events (the
effective alphabet at each context) cannot be too large, as a
different Huffman table needs to be designed for each
context. For the same reason, the number of contexts must
be relatively small. On the other hand, the alphabet cannot
be too small, for otherwise the redundancy of Huffman
codes (ie., the excess code length over the entropy)
increases. This redundancy vanishes only for distributions in
which each probability is a negative power of two. An
additional fundamental limitation of Huffman codes is that
they require a minimum code length of one bit per encoding,
which may produce a significant deterioration in the com-
pression ratio for contexts with very skewed distributions.

By addressing and finding a solution to the above
problems. the present invention attains, at low complexity,
compression ratios similar or superior to those obtained with
more complex codes based on arithmetic coding, e.g.. the
family of Sunset coders. In particular, as discussed below,
the present invention proves to have superior compression
performance than the JPEG independent lossless compres-
sion system at a lower level of complexity.

FIG. 2 is a block diagram of an image compressor system
201 according to a preferred embodiment of the present
invention. Uncompressed images are stored in an image
buffer 203. The image buffer is connected to a pixel
sequence generator 205. The pixel sequence generator 205 is
connected to a predictor 207 and to a context quantizer and
pixel encoder 209. The predictor 207 operates to determine
a predicted value for the pixel currently being processed,
using its context. The total number of possible contexts can
be quite large. The context quantizer 209 operates to classify
a particular context as being one in a set of quantized
contexts.

In one embodiment, the image compressor 201 operates
as a two-pass system. In the first pass the image compressor
201 counts the number of occurrences of each error value for
each quantized context. At the conclusion of the first pass,
the image compressor 201 has produced probability distri-
butions for the prediction residuals for each quantized
context. These context-dependent counts of prediction
residuals are input to a coding table generator 211. which
builds Huffman tables based on the probability distributions
of the prediction residuals.

During the second pass, the image compressor system
201, via the context quantizer/pixel encoder 209 uses the
context-specific Huffman tables to encode the prediction
residuals for each individual pixel in the image being
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compressed. The encoded image may then be decoded by an
image decoder, such as the one shown in the block diagram
of FIG. 12.

The pixel sequence generator 205 outputs a number of
context pixels to the predictor 207. FIG. 3 is a graphic
depiction of a causal template 301 used by the present
invention. Element 303, a pixel having the value x, is the
pixel currently being processed. In the template 301, the
value of the “North” pixel 305 (the pixel above the current
pixel 301) is denoted by a, the value of the “West” pixel 307
(the pixel on the left) is denoted by b, while the values of the
“NW” (pixel 309) and “NE” (pixel 311) pixels (the pixels on
the diagonals) are denoted by ¢ and d, respectively. The
“East” pixel is not used, because it is unavailable to the
decoder as it decodes the code string sequentially. Of course,
a, b, ¢, and d depend on the time index i, but this dependence
has been deleted from the notation for simplicity.
Prediction

The predictor 207 of the image compression system 201
employs a simple test to detect vertical or horizontal edges.
If an edge is not detected. then the guessed value is a+b—c,
as this would be the value of x, ,; if a plane passes through
the N, W, and NW pixel locations, with respective heights a,
b. and ¢. and the current pixel is constrained to belong to the
same plane. This constraint expresses the fact that the image
is expected to be smooth in the absence of edges.
Specifically, the predictor 207 guesses:

if ¢ & max(a,b) 2

if ¢ = min(a,b)
otherwise

min(a,b)
Xl = max(a,b)
a+b-c

Assuming, without loss of generality, that a<b, then the
predictor of (2) can be interpreted as picking a in many cases
where a vertical edge exists left of the current location, b in
many cases of an horizontal edge above the current location,
or a plane predictor (i.e., smoothness is assumed) if no edge
has been detected.

In an alternative embodiment d is used by the predictor
209. By utilizing d the predictor 209 better identifies edges.
In this embodiment, the predictor 209 obtains first-order
entropy of prediction errors which are smaller than when
using equation (2). This predictor can be expressed as

max(a'b) if a+b—c & max{z'\b) 3)

X = min(a'b) if a+b—c & min(a'.b)
a+b-c otherwise

FIG. 4 is a schematic diagram of the predictor 207 using
the equations (3) and (4). A circuit 401 produces the auxil-
iary signal a. The circuit 401 accepts the a and d input
values. These values are added by an adder 403, and divided
in two by a shift register 405. The resulting output is
multiplexed with the value a by multiplexer 407. The control
signal Y1 for the multiplexer is produced by a controller
409. If the control signal Y1 is 1, the output from shift
register 405 is output as the auxiliary signal a', otherwise the
value a is output as auxiliary signal a'.

The control signal Y1 is produced by a control circuitry
501 shown schematically in FIG. 5. The control circuitry
501 accepts as input the values a, ¢, and d. The value d is
subtracted from the value a by a subtractor 503. Similarly,
the value a is subtracted from the value c by a subtractor 505.
The resulting values are fed into absolute value units 507
and 509, respectively. The output from the absolute value
unit 509 is fed into a shift register to be multiplied by 4. The
output from the shift register 511 and the output from the
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absolute value unit 507 are both fed into a comparator §13.
The output of comparator 513 is 1 if la—di<dla—c| and 0
otherwise. To determine whether the signs are equal for the
two terms a—d and c-a the sign bit of each subtractor 503
and 505 output is extracted 515 and 517 and these sign bits
are compared by a comparator 519. The output of the
comparator 519 is 1 if the two sign bits are equal and 0
otherwise. The outputs from the comparators 513 and 519
are ANDed by AND gate 521 to produce the control signal
Y1.

Returning to FIG. 4. The circuitry 411 is connected to the
circuitry 401 via signal a'. The circuitry 411 determines the
predicted pixel value based on the context pixel values a, b,
and c, and the value a'. The circuitry 411 calculates three
alternative values representing the three alternatives of equa-
tion (3). The first alternative value is produced by adding
values a and b by adder 413 and feeding the resulting sum
and the value c to subtractor 415. The subtractor output is
then fed as a first input into a multiplexer 417. The second
and third alternative values are the minimum and maximum
values of values a' and b. These are produced by units 419
and 421, respectively.

The control signals Y2 for the multiplexer 417 are pro-
duced by a second control circuit 423. The inputs to the
control circuit 423 are the minimum and maximum values of
values a' and b, output from units 419 and 421, respectively,
and the output from the subtractor 415. The control circuit
423 is shown in greater detail in FIG. 6. The control circuit
423 consists of two comparators 425 and 427. Each of the
comparators is connected to the signal a+b—c, output from
subtractor 415. The comparator 425 is connected to the
max(a',b) signal and outputs a 0 if the result a+b—c is less
than the maximum of a' and b, and outputs a 1, otherwise.
The comparator 427 is connected to the min(a',b) signal and
outputs a 0 if the result a+b—c is greater than the minimum
of a' and b, and outputs a 1 otherwise The control signal Y2
is the combination of the outputs from the comparators 425
and 427.

If the control signal Y2 is 00, indicating that min(a')b)
<at+b—c<max(a'\b), the predicted pixel value is the result
at+b—c. If Y2 is 01, indicating that a+b—c=min(a'b), the
predicted pixel value is the minimum of a' and b. Otherwise,
Y2 is 10, indicating that a+b—c2 max(a'.b), and the pre-
dicted pixel value output by predictor 207 is the maximum
of a' and b. If Y2=11, then a+b—c=min(a'.b)}=max (a'.b), and
any of the inputs can be selected, e.g.. max(a'b).

FIG. 7 is a block diagram of the context quantizer and
pixel encoder 209. The context quantizer/pixel encoder
consists of five major units, namely, an error circuitry 701,
a context determination circuitry 703, a context-indexed
counter 705, an encoder 707, and a coding table selector
709. The current pixel and the predicted value (from the
predictor 207) are input to a subtractor 711 of the emor
circuitry 701 to determine the prediction residual or predic-
tion error. As is discussed below in conjunction with FIG. 9,
depending on which quantized context the current pixel’s
context is a member of, either the error (e) or the opposite
value of the error (—e) is encoded or counted. Therefore, the
negative of e is produced by unit 713, and both values are
fed into a multiplexer 715 to be selected by a control signal
(reversed) from the context determination circuitry, which
outputs the error quantity € which is to be counted (by pass
1 of the image compressor 201) or encoded (during pass 2).

The error quantity e is fed into both the context-indexed
counter 705 and the encoder 707. These are enabled or
disabled depending on which pass the image compressor
201 is operating by a pass signal.
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Parameter Reduction:

Reducing the number of parameters is a key step in a
context modeling scheme. In a sequential formulation. the
goal is to avoid “context dilution,” while in a two-pass
scheme we wish to reduce unnecessary table overhead. The
total number of parameters in the model depends on the
number of different error events considered at each context,
and on the number of contexts.

One method of the image compressor 201 is Alphabet
reduction. Let A denote the total number of different pixel
intensities, which is assumed to be a power of two (e.g..A=
256 for 8-bit pixels). In principle, the error residuals may
take on values in the range [-A+1,A—1]. However, given the
predicted value, only A residuals within this range can occur,
and it is easy to see that the decoder only needs (e,,, mod
A) to recover X,,,. This modular reduction amounts, in a 2’s
complement representation, to just ignoring any carry to the
log A +1st bit. Thus, the image compressor 201 makes use
of the fact that prediction residuals are integers between
—A/2 and A/2-1, represented with log A bits.

Assuming that the predictor indeed makes reasonable
guesses, the distribution of prediction residuals is usually
skewed, peaked at 0, and decaying rapidly for large predic-
tion residual magnitudes. Thus, it is unwise to build Huff-
man codes for the entire set of A possible error events (one
code for each context), as most of these events are expected
to occur with very low probability. Instead, the image
compressor 201 considers the following possible events for
the error value €,,:

“less than (-T)", -T, -T+1, . . ., -1,0.+1, .. ., T-1, T, “greater
than T” )

where T is a threshold parameter used to tune the image
compressor 201. For A=256, T=8 proves to be a good
empirical choice, thus leading to 19 possible error events per
context. Of course, if le;, | happens to be larger than T, the
decompressor system still needs to be informed of the exact
absolute value of the prediction residual (the sign is already
given by the “smaller than (~T)” and “greater than T.”
events). Because this is an unlikely event, an image com-
pressor 201 according to the present invention saves
“parameter resources” by encoding all the occurrences of
large prediction residuals using a single distribution, regard-
less of the context at which the events “e, ,<-T.” or “e,,
1>T,” are encoded.

After a prediction residual is identified to be large, A/2-T
possible values (representing the absolute value of the error)
need to be assigned code words, with the encoder 707 in a
“large error” state. Again, very large residuals are extremely
unlikely, so the present image compressor 201 uses a further
reduction of the corresponding Huffman table, which con-
sists of the values:

T+, T42, ..., B, BB+, ©

where B is a parameter. For A=256, B=64 is a good
empirical choice.

If an error residual happens to be at least B+1, then the
corresponding Huffman code word is followed by the binary
representation of the value (lel-B-1) to |-10g (AIZ—Bﬂ bits
(e.g.. 6 bits for A=256) to indicate the exact error value.

By (5) and (6), the image compressor 201 requires a
(2T+3)-entry Huffman table (typically, 19 entries) per
context, together with a single (B—T+1)-entry Huffman table
(typically, 57 entries for A=256). As is discussed below, two
other types of Huffman tables (resulting from extending the
reduced alphabet) are also used. These Huffman tables are
stored in a table array memory 711.
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The context that conditions the encoding of the current
prediction residual in the image compressor 201 according
to the present invention is built out of the differences
g,=d-a, g,=a—c, and g;=c-b. Intuitively, these differences
represent the local gradient, which governs the statistical
behavior of prediction errors. By symmetry, the three dif-
ference values influence the model in the same way. In the
image compressor 201, parameter reduction is obtained by
quantizing each difference into approximately equiprobable
regions. In a well-defined mathematical sense, this maxi-
mizes the mutual information between the current pixel and
its context, an information theoretic measure of the amount
of information provided by the conditioning context on the
pixel value to be modeled.

According to the present invention, low complexity of the
image compressor is achieved by quantizing the context
based on a fixed number of “equiprobable” regions. By
symmetry, there is one region centered at the difference
value 0, and if the interval [r, r,] represents a region, then so
does {-r,,—1,]. Thus, the total number of regions is an odd
integer 2R+1 and, in principle, this would lead to a total of
(2R+1)* different contexts, where R is a parameter that
controls the number of quantization regions. However, again
by symmetry, it is reasonable to assume that

Prob {e,,,=DICrlq,, 42, 4s1}=Prob {e,.,=—DIC~—q,,

—a2 —gqal} @

where C; represents the context triplet at time i and g,
j=1,2.3. are quantized differences corresponding,
respectively, to q;, j=1, 2. 3 (parenthesis are used herein to
denote the triplet of gradients (g;. g,. g5) and square brackets
to denote its quantized counterpart [q,. q,. 9s]). Using this
equality, the image compressor 201 reduces the number of
contexts to (2R+1)>-1)/2+1. In a preferred embodiment the
image compressor 201 uses R=1, which results in 14 dif-
ferent contexts.

Each quantized context is represented by a three-
dimensional vector [q,, q,. q;]. For each non-zero vector,
there is a vector with the same magnitude but exactly
opposite orientation. The contexts represented by these
opposing vectors are considered a quantized-context pair,
and in one embodiment of the image compressor 201, only
one Huffman table is generated for each pair. Notice that, by
merging symmetric contexts, the encoded value may actu-
ally be the opposite of the prediction residual. For example,
with R=1, let (-1), 0, and (+1) denote the three context
regions (denoting “negative,” “around zero,” and “positive,”
respectively). If a residual of, say, 4 is encoded as such at
context [-1, +1, 0], then a residual of, say, 3 at context [+1,
-1, 0]. is actually encoded as a (—3), with the same tables as
the former.

To complete the definition of the contexts in an embodi-
ment of the image compressor 201 with R=1, a parameter S
specifies the value that determines the boundaries between
quantization regions. The central region is formed by those
difference values A such that —S<A<S. It turns out that the
optimal value of S depends heavily on the image. For many
images a reasonable choice is S=7. For some smoother
images this selection will tend to concentrate most of the
pixels in the central region (i.e., contexts like [0,0.0] or
[0,0.+1]). while contexts like [-1.+1,+1] tend to be under-
populated. In the present invention. a solution to this prob-
lem is obtained by choosing a relatively large boundary
value (e.g.. S=7 as a default), and then subdividing the
“central context” [0,0,0] by recursively applying the same
scheme with the boundary parameter [s721 Thus, the total
number of contexts is augmented to (2R+1)* (namely, 27 in
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one preferred embodiment). As is discussed below, under-
populated contexts may be encoded with a fixed code, thus
saving unnecessary table overhead.

FIG. 8 is a high-level block diagram of the quantizer 703
of FIG. 7. As discussed above, two levels of quantization are
performed, one using S and one, for a central context [0,0,0]
using Ls/2]. The former context quantization is performed
by a gradient context quantizer 861 and the latter (the
sub-quantization of the central context) is performed by a
second gradient context quantizer 803. Internally the two
quantizers 801 and 803 arc identical and are shown in FIG.
9.

The three gradients, d-a (g,), a—c (g,). and c-b (g,), are
determined by subtractors 901, 903, and 905, respectively.
These are each input to a *“+S” quantizer 907 (907a, 9075,
and 907¢, respectively). Each of the “+S” quantizers 907 are
internally identical and an exemplary “+S” quantizer 907 is
shown in FIG. 10. The “+S” quantizers 907 input a gradient
g; and the parameter S and its negative (-S). The “4S”
quantizers 907 consist of two comparators 1001 and 1003,
which operate to produce a two-bit output signal q;, having
a value “10” for g,;=-8§, “00” for —S<g,<S, and *“01” for
S=g, (these relationships correspond to -1, 0, and 1,
respectively, for the value of q, in the preceding discussion).
S is assumed positive. so the combimation “11” is not
possible.

Returning to FIG. 9, as discussed above, there is a
symmetry between quantized contexts, and the image com-
pressor according to the present invention capitalizes on that
symmetry by only having one table for each pair of sym-
metric quantized contexts. Therefore, quantized context
signals. q;. are fed into a mapping table 909 which maps the
quantized context with the appropriate Huffman table. As
noted above, with R=1 there are 14 such tables. Thus, the
context index output from the mapping table consists of four
bits representing a number between 0 and 13. Additionally,
there is a one-bit output, reversed, for indicating whether the
index is for the “opposite™ table.

Table 1 is an illustrative example of the mapping table

909:
TABLE 1

Input Qutput

I qt q2 q3 |  mapped to I index | rev |
I 00 00 00 1 00 00 00 | 0000 I 90 |
I 00 00 01 I 00 00 01 1 0001 10 I
I 00 00 101 00 00 01 I 0001 I 1 1
I 00 01 00 | 00 01 00 1 0010 1 0 |
I 00 01 o1 1 00 ot 01 + o011 t 0 [
I 00 01 10 1 00 o1 10 1 0100 (] [
i 00 10 00t 00 01 00 I 0010 1 i
1 00 10 01 + 00 Ot 10 | 0100 11 |
I 00 10 10+ 00 Ot 01+ oo1 o1 |
t 01 00 00 1 01 00 00 | 0101 I 0 §
I 01 00 01 1 01 00 61 I 0110 [ B ]
I 01 00 101 01 00 10 1 o I 0 {
i o1 01 0 | 01 o1 00 | 1000 10 I
I 01 01 01 1 01 01 o1t 1001 I 0 |
I 01 01 101 o 0 10 | 1010 I 0 1
I o1 10 00 | 01 10 00 | 1011 I 0 |
I 01 10 a1 1 o1 10 o1 | 1100 I 0 |
I 01 10 101 01 10 10 1 1101 I 0 |
I 10 00 00 1 01 00 00 | 0101 11 |
I 10 00 o1t 01 oo 10 1 o 11 |
i 10 00 10 1 01 00 01 | 010 I 1 |
{ 10 01 00 I 01 10 00 | 1011 I 1 I
I 10 01 01 + 01 10 10§ 10t 11 I
I 10 01 10 1 01 10 01 § 1100 i1 [
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TABLE 1-continued
Input Output
I ql q2 q3 |  mappedto I index 1 rev |
I 10 10 00 | 01 0t 10 1 1000 1 I
t 10 10 011 01 01 10 I 1010 1 |
I 10 10 10 1 01 Ot 01 1 1001 I 1 |

Returning to FIG. 8, the context indexes from each of the
gradient context quantizers 801 and 803 are fed into a
multiplexer 805 for selecting which of the context indexes to
be output from the context determination circuit 703. The
multiplexer 805 is controlled by a comparator 807 which
determines if the context index output from gradient context
quantizer 801 is the “central” context. If so, then the index
from the subquantizer 803 is selected. The comparator 807
also controls which of the reversed signals is output from
context determination circuit 703. The two reversed signals
are input into a multiplexer 809 which is controlled by the
output of the comparator 807. Thus, the reversed signal
output by the context determination circuit 703 corresponds
to the selected context index. The index signal out of 703
consists of 5 bits: 4 bits from the selected index, and one bit
to indicate which one was selected. The 5 bit index takes on
one of 27 possible values.

Embedded Alphabet Extension

The image compressor 201 of the present invention
addresses the redundancy of Huffman codes due to very
skewed distributions, by embedding an alphabet extension
into the context conditioning. Typically, very skewed dis-
tributions occur in the context where the absolute values of
the three differences (g,, g,. g;) are small, as this indicates
a smooth region. Moreover, this context often occurs in runs,
i.e., there exist connected regions in the image where every
pixel occurs at the same (low-activity) context. This obser-
vation makes possible the implementation of an alphabet
extension, by considering runs of O-error values in the
following manner. First, the “low-activity” context is split
into two separate contexts, one for the case where a=b=c=d
(i.e., all gradients are exactly zero) and one for the other
cases. In general, if a very skewed distribution exists, after
this split it will be mostly associated with the zero-gradient
context. Thus, occurrences at the remaining context are
encoded with the non-extended (reduced) alphabet and, for
R=1, the number of contexts using this alphabet remains 27
(or 14, if the option of further partitioning the “central
context” is not employed). For the zero-gradient context, the
extended alphabet is represented with the tree 1101 shown in
FIG. 11. Leaves 1103-1121 of the tree 1101 represent the
events to be encoded. Notice that if x,,, occurs at this
context, then, clearly, &, ,=a. If the prediction residual e, ,
is non-zero, a leaf is reached and a single pixel is encoded.
But if, as expected, a 0-error occurs (i.e., x,,,=a), then the
pixel East of d is considered. Clearly, if its value equals d,
then x,,, also occurs at the zero-gradient context. In this
case, we can search for longer runs by traversing the tree
1101; otherwise, a run-length of 1 is encoded. If the tree is
traversed and X, ,#d, the Tun is broken and a run length of
1 is encoded (a leaf was reached). The prediction residual
X;,o—d is then encoded at a new “end-of-run” state, for which
the distribution does not include the event 0. This new state
incorporates the information that x,,, is not d, which oth-
erwise would be lost and the code would be redundant. If,
again, as expected, x;,,=d. then the tree indicates that the
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run-length is at least two, and the process continues until one
of the following contingencies occurs:

a. A pre-determined maximal run length r is reached (the
default value in our current implementation is r=6). The
r consecutive 0-error values are encoded as a single
event, and the next pixel is either encoded at one of the
27 (or 14) ordinary contexts, or starts a new run. This
is indicated by leaf 1121.

b. The run is broken by a non-zero error value,

e.g., leading to leaf nodes 1115, 1117, or 1119. The
accumulated run is encoded as a single event and the pixel
that breaks the run is then encoded at the “end-of-run” state
1123.

c. The next NE pixel breaks the run of zero-gradient
contexts. The accumulated run is encoded as a single
event and the next pixel is encoded at an ordinary
context.

The alphabet extension procedure contains a certain
amount of redundancy. That is due to the fact that the
information needed to determine whether a run will be
broken due to contingency c., is already available to the
decoder at the beginning of the run. Thus, the decoder is able
to predetermine that longer runs cannot occur and does not
need to reserve coding space for these events. This redun-
dancy can be easily removed as discussed below.

In a preferred embodiment, the maximal run length
reflects experimental results, which indicate that for most
images r=6 produces an acceptable reduction in the redun-
dancy of the Huffman code at the zero-gradient context. This
is also the case for images with long runs, which are frequent
for example in digital radiclogy.

To summarize, the proposed alphabet extension, which is
embedded into the context model, requires two additional
distributions: one for the zero-gradient run-context and one
for an end-of-run state. The alphabet size for the former is
2T+r+2, while for the latter it is 2T+2. With the default
parameters T=8 and r=6, these requirc 24 and 18-entry
Huffman tables, respectively.

Huffman coding

Above is described a procedure under which the image
compressor 201 in compressing a pixel, or a string of pixels,
yields one or more of the following encoding actions
(numbers of events are computed using the default param-
eters for A=256:

a. An event out of 19 is encoded at one of 27 (or 14)
possible contexts (small prediction error at ordinary
context).

b. An event out of 57 is encoded (big prediction error).

c. An event out of 24 is encoded (a possibly aborted run
at the zero-gradient context).

d. An event out of 18 is encoded (end of run state).

Thus, the present image compressor 201 manages 27 (or
14) 19-entry Huffman tables, as well as single 57-entry,
22-entry, and 18-entry Huffman tables. These tables are
stored in the table array memory 711. In a preferred
embodiment, the image compressor 201 operates in two
passes: one for collecting the statistics from which optimal
Huffman codes are built, and a second one for encoding the
data through table look-up. The codes must be transmitted to
the decoder, which then proceeds sequentially, in one pass.
One-pass encoding alternatives are described below.
Because the total number of events to which Huffman codes
are associated can be up to 612 in a 27-context version.
special attention must be given to whether a Huffman code
should be completely described, and how. This issue is
especially important in small images, for which excessive
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table overhead may offset the savings obtained through
context conditioning. Therefore, in one embodiment, image
compressor 201 compares the compression achieved using
various combinations of tables, such that table-overhead can
be minimized. In some cases, the compressor 205 might
decide not to send a table, and revert to default tables known
to both the compressor and decompressor, or to send a
slightly mismatched table with a shorter description. In both
cases, the slight loss in encoding length is offset by gains in
table overhead. All the table information is available to the
encoder at the end of the first pass, before encoding.
Efficient Code Description

A Huffman code is completly specified by describing its
associated binary tree and the correspondence between
symbols (or events) and leaves of the tree. A complete binary
tree having L leaves, L22, can be described with 2L-4 bits.
A straightforward way to construct such a tree consists in
constructing a binary sequence by visiting the L-1 internal
nodes sequentially. starting at the root and traversing each
level of the tree in lexicographic order. Each node is
assigned two bits, one per child. A “0” denotes that the
associated child is a leaf, while a “1” corresponds to a child
that is an internal node. The two bits corresponding to the
last visited internal node are ignored, as they are always both
“0.” Next, the leaves of the tree are mapped to the symbols
of the alphabet, which constitutes the expensive part of the
code description. Having collected the statistics and com-
puted optimal Huffman codes, the image compressor 201
takes into consideration three coding alternatives for the
2T+3 possible events at each ordinary context:

a. It assumes that for every non-negative integer t

Prob{e;, =1C,}&Proble,,,=t+1IC,} (8)
and
Prob{e,,,=—-1iC,ZProb{e,, ;=#+11C,} )

Under the constraints (8) and (9), a ranking of the error
probabilities by decreasing values needs only 2T bits to be
described, provided that the position of the “c., ,>T” and
“e.1<=T." events in the ranking is specified, which takes
another rlog(2T+3)_|bits. Thus, by adding the Huffman tree
description (2T+2 bits), the code can be specified with a total
of 6T +2rlog(2T+3)J+2 bits (namely, 60 bits with T=8). Of
course, if (8) or (9) do not apply to the statistics collected in
the first pass, the resulting code is not matched and the code
length will not be optimal. However, in most cases these
constraints either do apply or are slightly violated for some
value of t close to T. In under-populated contexts, the
resulting excess code length is usually smaller than the
savings resulting from an incomplete code description.

b. No assumptions are made, and the code is fully
described by appending to the tree representation a
listing of the 2T+3 events, ranked by decreasing fre-
quencies. For simplicity, a full byte is used for each
event. An additional one bit specifies whether the code
description is partial (i.c., the assumptions of a. above
are used) or full.

c. A fixed table, known to both the encoder and the
decoder, is used. This alternative saves table overhead
for contexts that occur only a small number of times.
For example, for T=8, a possible code can assign code
words of length 3 to the events 0,1, and ~1, code words
of length 4 to the events 2,~2,3, and -3, and code words
of length 5 to the other events. The tables are preceded
by one bit per context, specifying whether fixed or
customized (i.e., as in alternatives a. or b.) tables are
used.
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The image compressor 201 uses a similar procedure for
the distribution at the end-of-run state. For the run state
(zero-gradient context) and for the single distribution cor-
responding to values of e,,, larger than T, only the last two
alternatives are considered (with different fixed codes). At
the end of the first pass, the encoder decides for the
alternative that results in the shortest code length, and the
decoder is informed of the codes to be used in the second
pass.

The method of operation of the image compressor of the

present invention

The sequential steps image compressor 201 follows, in its
two-pass form, are described below. For simplicity, we omit
special cases such as the treatment of the boundaries of the
image. Thus, we assume that the surrounding pixel values a,
b, c, and d are well-defined for the processed pixel x,, ;. For
example, it can be assumed that all pixels outside the image
boundaries are zero. For illustrative purposes, the context
quantization assumes R=1.

This method may be carried out on a general purpose
computer having. e.g., a central processor, a random access
memory, a read-only memory, a number of input/output
devices, a video memory. This computer may be connected
to other computers via a network such as a local-area
network (LAN), a wide-area network, or via a communica-
tions links such as telephone or cable-television networks.
Alternatively, the method may be carried out on a special
purpose device such as a medical imaging system. In either
application the method may either be software instructions
loaded into the systems memory and executed by the central
processing unit, may be implemented using the hardware
embodiments described above, or may be stored in a read-
only memory as firmware.

Method:

Step 0. Define a first alphabet reduction threshold T, a
second alphabet reduction threshold B, a maximal run
length r, and a context quantization threshold S. The
defanlts for these parameters in a preferred embodiment
are 8, 64, 6, and 7, respectively. Specify whether recursive
subdivision of the “central context” is desired (27-context
option, as opposed to the basic 14 contexts). Allocate
occurrence counts for 2T+3 events at each context, for
B-T+1 events in the single distribution of large error
values, for 2T+2+4r events at the run state, and for 2T+2
events at the end-of-run state. Transmit to the decoder one
bit indicating whether the default parameters are used. If
some non-default parameter is selected, transmit the val-
ues of the parameters. Use another bit to indicate either 27
or 14 contexts.

Step 1. Having processed the pixel sequence x’, start pro-
cessing for the next pixel x,, . At the end of the image, go
to Step 14. Given the values a, b, ¢, and d of the
surrounding neighbors, compute the corresponding dif-
ferences d—a and c-b (a—c is already available after
processing X;).

Step 2. Predict x,,; as &,,; according to (2), or (3) and (4).

Step 3. Read x,,, from the input and compute e, ,=(X,,;~
R.+1) to log A bits.

Step 4. By comparing their values to a threshold S, map the
context differences to the quantization regions —1. 0, and
+1., thus obtaining a context triplet C=[q,.q,. q,]. If the
first non-zero component of the triplet is —1, change all
the signs in the triplet and associate a negative sign to it.
Otherwise, associate a positive sign.

Step 5. If the 27-context option is used (rather than 14) and
C, is the “central context” [0,0,0], repeat Step 4 with the
threshold parameter Lsr2l
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Step 6. If the negative sign is associated with C, then
€1 €y

Step 7. i a=b=c=d, take the encoder into the “run” state
(Step 10). Otherwise, stay in the “ordinary context” mode
(Step 8).

Step 8. In the ordinary context mode, if le, ST then
increment the count corresponding to e,,, at context C,,
increment i, and return to Step 1. Otherwise, increment
the count comresponding to either “large positive” or
“large negative” error.

Step 9. I le,,,|=B, increment the corresponding count in the
distribution for large errors. Otherwise, increment the
count corresponding to le,,,[B. Increment i and return to
Step 1.

Step 10. In the run state, if e, ;#0 proceed as in Steps (8) and
(9). Use the counts corresponding to the run state and, if
necessary, the distribution of large errors.

Step 11. Otherwise, if e,,,=0 increment a run-count. If the
value of the next NE pixel equals d, read x,., and
increment i. Otherwise, skip Step (12).

Step 12. Repeat Step (11) until the processed pixel is not d,
or until the run-count reached the allowed maximum r.

Step 13. Increment the occurrence count corresponding to
the total run length detected in the run state counter. If the
last read pixel is not d, increment the corresponding count
in the end-of-run state. If necessary, increment also a
count in the distribution of large errors. Increment i and
return to Step (1).

Step 14. Once the first pass is complete, compute the
Huffman codes for all the distributions stored. For each
code, compute the code lengths corresponding to the
representations described above in the sections of “Huff-
man Coding” and “Efficient Code Description” and select
the one that results in the shortest code length. Transmit
to the decoder a header indicating, for each code, whether
customized or fixed tables are used. For each customized
code, transmit the description of the Huffman tree. For the
ordinary contexts, transmit a bit indicating whether full or
partial table description is used. Then, describe the fre-
quency ranking.

Step 15. Perform the second pass similarly to the first one,
but instead of incrementing occurrence counts, transmit
the corresponding code word. If Step (9) is executed and
le,.,/>B, transmit also a[log A72—B [bit representation of
le;.,-B-1.

FIG. 12 is a block diagram of an image decoder 1201
corresponding to the image compressor 201. The decoder
1201 accepts a compressed image from the image compres-
sor 201 and stores this compressed image in a compressed-
image buffer 1203. The Huffman coding tables used to
compress the image are transmitted from the image buffer
1203 to a context quantizer and pixel decoder 1205. The
tables are the Huffman tables generated by the image com-
pressor 201. The context quantizer determines the context of
the pixel to be decoded in the same manner as the image
compressor 201. However, to obtain the context for the
pixel, the image decompressor 1201 utilizes a previously
decompressed sequence of pixels. Therefore, when a pixel
has been decoded it is transmitted from the context quantizer
and pixel decoder 1205 to a decompressed image buffer
1207. A pixel sequence generator 1209, connected to the
decompressed image buffer, transmits the context pixels, a.
b, c, and d (as defined above in the description of image
compressor 201), to a predictor 1211. The predictor 1211
uses the same method as the predictor 207 of image com-
pressor 201 to determine the predicted value, &,. which
together with the context, a, b, c, and d, is fed into the
context quantizer and pixel decoder 1205.
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FIG. 13 is a block diagram of the context quantizer and
pixel decoder 1205. The unit 1205 receives the context
values a, b, ¢, and d from the pixel sequence generator 1209.
These context values are fed into the context determination
unit 703’ which operates like unit 703 (described above in
conjunction with FIGS. 7, 8, and 9). The context determi-
nation unit 703’ outputs a context index and a reversed
signal. The context index is input into the decoding table
selector 709", which uses the index to fetch the appropriate
Huffman table from the table array memory 711 The table
array memory 711’ is similar to the table array memory 711,
but because coding and decoding may occur on different
machines, these memories are often not the same memory.
Also, encoding and decoding tables carry the same infor-
mation but may have different formats optimized for the
operation at hand.

The decoding table selector 709 feeds the appropriate
decoding table to the decoder 1301. The decoder 1301 also
receives the enmcoded pixel value, y, and looks up the
corresponding code in the decoding table. The sign of the
value € is reversed by sign change unit 713' and both the
value ¢ and its negative are fed into and selected by a
multiplexer 715' which is controlled by the reversed signal.
The output from the multiplexer 715' ¢ is added to the
predicted value &, by an adder 1303 to produce the decoded
value x,, which is fed into the decompressed image buffer
1207.

The context quantizer portion of unit 1205 operates
according to the same method as the context quantizer of the
image compressor system 201. Thus, the context quantizer
determines which Huffman table to use to look-up the error
corresponding to the compressed pixel value y. Having
looked up the error value e, the pixel decoder 1205 adds that
quantity to the predicted value ;.

The following decoding method assumes that the various
Huffman codes are represented by their binary trees with
labeled leaves. In one alternative suitable for faster
decoding, the first action that the decoder takes is to translate
the compact descriptions generated by the encoder into more
easily accessible tables.

Decoding method

Step 0. Retrieve the parameters T, r, and S, and use the
header information to build the Huffman trees.

Step 1. Having decoded the pixel sequence X', start decoding
of the next code word. Given the values a, b, ¢, and d of
the surrounding neighbors, compute the comresponding
differences d—a and c—b (a—c is already available).

Step 2. Execute Steps 4, 5, and 7 of the image compression
method described above to determine the context C,, its
sign. and the mode (run state (step 4) or ordinary context
(step 3)).

Step 3. In the ordinary context mode, traverse the Huffman
tree corresponding to C, following the encoded bit stream,
until a leaf is reached. If the leaf indicates that le,, ,|>T,
further follow the encoded bit stream to traverse the
Huffman tree corresponding to the distribution of large
errors. If, again. the decoded code word indicates that
le;>B , read the next rlog (A/Z—B)J bits to compute the
exact value of e, ,. If the negative sign is associated with
C,, then change the sign of ¢,,,. Finally, compute &,
according to (2) or (3) and (4) (depending on which
predictor has been adopted) and output X, ,=e,,%;,.
Increment i and return to Step 1.

Step 4. In the run state, traverse the Huffman tree corre-
sponding to this state following the encoded bit stream,
until a leaf is reached. If the leaf indicates a zero-length
run, proceed as in Step 3. Otherwise, output as many pixel

10

15

20

25

30

35

45

50

55

65

18

values d as indicated by the leaf and increment i accord-

ingly. If the total run-length is r, or if the next NE pixel is

not d, return to Step 1. Otherwise, further follow the

encoded bit stream to traverse the Huffman tree corre-

sponding to the end-of-run state, proceed as in Step 3 to

obtain e, ,, and output X, =¢,, ,+d. Increment i and return

to Step 1.
Experimental Results

The present invention has been implemented in a system
referred to below as LOCO?I (Low Complexity, Context-
Based, Lossless Image Compression). Table 2 is a compari-
son of compression results achieved by LOCO?I and several
other image compressors. The results reported below were
achieved using the basic configuration of the present inven-
tion as discussed above in conjunction with FIGS. 1-11 for
compression of a set of gray-scale images digitized at 8 bits
per-pixel. This set includes standard images, as well as
medical, satellite, and (mosaic) digital camera images. Pre-
liminary results on RGB color images are discussed below
in conjunction with a discussion of alternative embodiments
to the basic configuration which improve performance with
color images. Specifically, the set of test gray-scale images
reported on in this section is composed of:

a. The 576 rows by 720 columns color test images from

the JPEG standards committee, represented in the YUV

system. with the chrominance components U and V
subsampled to 576x360 and each component consid-
ered separately as a gray-scale image.

b. The 512x512 gray-scale standard images from the USC
data set.

c. Medical (MRI, X-ray, and ultrasound) images. The
MRI images (human brains and a sequence of head
slices) have dimensions 256x256. The X-ray images
tested (human bone and lung) are 1024x1024. The
ultrasound images, in turn, are 480x512 renderings of
human hearts.

d. A set of seven 480x640 images of the planet Neptune
obtained by the Voyager spacecraft. In addition to the
main image object the image files contain textual and
graphic information near the edges.

TABLE 2
Diff. Context Sun- Lossless 7-Pass DPCM

Image BT/CARP LOCOA st JPEG JPEG  Entropy
barb2 Y 456 484 481 526 52 544
balloon V. 2.28 242 242 257 257 282
gl U 278 285 287 303 303 304
hotel Y 4.26 4.47 443 489 489 495
hotel V. 3.25 335 337 359 35 359
hotel U 3.05 3.14 316 337 337 343
lena 4.15 433 421 465 465 461
pyramid 297 311 330 351 3.28(4) 4.14
couple 225 248 256 274  242(4) 3.58
MRI brain 4.35 462 451 49 49 4.96
MRI 2.55 281 287 297 297 366
head slice

lung X-ray 209 237 225 241 237(4) 311
heart 304 3.27 331 352 3304) 417
ultrasound

Neptune 3.04 3.26 354 369  356(4) 433
(Voyager)

In Table 2. a representative subset of thesc images is
considered. In Table 2, for each image considered the
compression ratio (bits per pixel—lower numbers are better
than higher numbers) is given for several image compres-
sion systems. The images listed in Table 2 are shown in
Appendix A. This set of images coincides with those
reported in Weinberger, et al.. and provides a basis for
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comparison with a state-of-the-art version of the Sunset
algorithm as described in G. G. Langdon, Jr. and M.
Mareboyana, “Centering of context-dependent components
of prediction error distributions,” in Proc. SPIE
(Applications of Digital Image Processing XVI), vol. 2028,
pp- 26-31. In addition, these results are compared with the
JPEG independent lossless compression system (described
in ISO/IEC 10918-1 ITU T.81. Digital compression and
coding of continuous tone still images—Requirements and
guidelines, September 1993). The results reported in Table 2
for the Sunset algorithm (which are taken from Weinberger
et al) correspond to computed ideal code lengths, ie.,
negative logarithms of the probabilities assigned by the
algorithm to the data. An additional overhead is expected
after following the modeling step by an arithmetic Q-coder
or QM-coder. In G. G. Langdon, Jr.. A. Gulati, and E. Seiler,
“On the JPEG model for lossless image compression,” in
Proc. of the 1992 Data Compression Conference,
(Snowbird, Utah, U.S.A.), pp. 172-180, March 1992, the
reported overhead (for an older version of the Sunset
algorithm) averages 3.5% for the Q-coder and 2.5% for the
QM-coder. As for lossless JPEG, the results reported in
Table 2 used arithmetic coding with the default parameter
values: predictor number 7, namely (a+b)/2, upper bucketing
parameter equal to 1, and lower bucketing parameter equal
to 0. As a reference, Table 2 also contains an additional
column which covers the (quite unrealistic) situation where
the best predictor for each specific image, out of the seven
standard predictors proposed in JPEG, is selected. This
scheme is referred to as *“7-pass JPEG.” The digit in paren-
thesis represents the optimizing predictor, in case it is not 7.
The results obtained with DCXT-BT/CARP, the best of the
universal context modeling options proposed in Weinberger
et al., are also reported as a benchmark. On the other
extreme, we give first-order (unconditioned) entropies of the
prediction residuals after applying the default JPEG predic-
tor (a+b)/2. This column is named “DPCM entropy.” A
comparison of the various algorithms on the complete sets
(including images not reported in Table 2) yields similar
results, and is summarized in Table 3. Excluding DCXT-
BT/CARP from the comparison, Table 3 shows that the best
compression ratios are obtained with LOCO?I, despite being
less complex than the arithmetic-coding-based algorithms.

TABLE 3

Diff.

Context Sun- Lossless 7-Pass DPCM
Image BT/CARP LOCON set JPEG JPEG Entropy
JPEG 341 3.55 355 382 3.81 390
(27 images)
usc 4.22 4.34 439 47 4.6 4.86
(26 images)
Medical 2.36 2.61 265 272 2.7 3.38
(49 images)
Space 291 3.14 341 347 3.43 423
(3 images)

LOCO?I has also been applied to two mosaic images,
captured with a Kodak digital camera. Each image was
compressed as 4 independent gray-scale images (two shifted
Green planes, one Red plane, and one Blue plane). The first
image. a portrait, compressed down to 4.57 bits/pixel with
LOCO?I versus 5.02 bits/pixel with lossless JPEG. The
second image, a picture of an office cubicle at Hewlett-
Packard Laboratories, yielded 4.52 bits/pixel for LOCO’I
versus 4.81 bits/pixel for lossless JPEG. Despite the corre-
lation reduction caused by the sub-sampling process (a
single image is compressed as 4 separate ones), the results
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obtained with LOCO?I are better than a 5:1 lossy JPEG
compression, which requires an interpolation step with
significant distortion. The reason is that the lossy JPEG
algorithm is applied to complete color planes, so that the
image to be compressed is formed by 24-bit pixels in total
after interpolation. Thus, a 5:1 compression would reduce
the total size only to 4.8 bits/pixel.

Alternative embodiments

There are many possible variations of the present
invention, some of which are mentioned in this section.
Some of these depend on specific target applications and on
that application’s particular complexity/compression con-
straints.

In some cases, the edge detecting capabilities should be
adapted to the specific complexity constraints. For example,
predictors that use knowledge of the NE pixel value provide
better edge detection, as is the case with the predictor of (3).
However, the crucial modeling step is performed by the
context modeler, and the impact of better predictors may be
limited and not merit the additional complexity. The quan-
tization of the context, in turn, may be affected by specific
applications. For example, for some medical images the
optimal value of the threshold S is smaller than the default
5=7 used in the description above of the image compressor
201.

As for the embedded alphabet extension, it is possible to
remove the redundancy (mentioned above in the section
entitled “Embedded Alphabet Extension”) caused by the
allocation of coding space which is known a priori to be
useless. An alternative embodiment of image compressor
201 eliminates this redundancy by first examining the maxi-
mum possible length of the run, which can be shorter than
the maximum allowed run-length r. A shorter length may be
due to either a broken run of NE pixels or a boundary, both
of which can be also detected by the decoder. The encoder
707 uses a different code for each possible value of this
maximum length, between 2 and r. The alphabet extension
tree for each code covers only achievable runs, thus remov-
ing the redundancy. Clearly, the decompressor 1201 can
keep track of the code used by the encoder 707 without any
side information. A single end-of-run distribution is shared
by the r-1 different codes. Another possible alternative
embodiment processes runs of other very frequent contexts,
not necessarily the zero-gradient one (e.g., contexts satisfy-
ing that la—cl, lb—cl, and la—d| are at most 1).

Another alternative embodiment provides for one-pass
coding in applications where two passes cannot be afforded.
In such an embodiment, a first approximation consists of
designing fixed Huffman tables which are made available
also to the decoder. This is possible in applications where
homogeneous data with specific characteristics is expected,
e.g.. MRI medical images. A fixed-table version of the
present invention maintains adaptivity, because the context
modeling classifies the pixels into classes which are encoded
with different tables. Although this is a 0-parameter code. in
the sense that no parameters are learned and transmitted to
the decoder, the number of contexts still plays a “model
cost” role, since it determines the amount of training data
needed to tailor fixed tables. Another alternative is the use of
Rice-Golomb codes (as described in R. F. Rice, Some
practical universal noiseless coding techniques. Technical
Report JPL-79-22, Jet Propulsion Laboratory, Pasadena,
Calif., March 1979) instead of Huffman codes. Finally, as
complexity permits, the present invention can be adaptively
encoded with an arithmetic code in one-pass, producing
compression results at least as good as (and likely better
than) the two-pass version.
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Additionally, the system and method of the present
invention, as described above in conjunction with FIGS.
2-12, is adaptable to the compression of color images. How
the present invention is used in conjunction with color
images depends on the color space in which the image is
represented. The YUV-type of representation is generally
assumed to produce fairly uncorrelated images, which,
consequently, can be independently compressed as gray-
scale images. On the other hand, the RGB representation in
some cases presents a strong correlation between its com-
ponents. Hence, although the image compression method of
the present invention may be applied to separate planes, in
other RGB-alternatives the prediction and modeling tem-
plates account for inter-plane correlation. In one embodi-
ment the Green plane (which contains most of the luminance
information) is compressed as a gray-scale image, and then
using its pixel values to model the other two planes.

Predictors for the Red and Blue planes, based on both
intra-plane correlation and correlation with the Green plane,
used by a compressor for color images according to the
present invention, to be followed by the method of the
gray-scale version of the image compressor 201 predicts the
Blue and Red planes by

- a+bh (10)

- (6 + b0
i+l = ) ———2

+ Ay~

where the superscript (G) denotes the corresponding value in
the Green plane. Thus, a predictor operating according to
(10) can be interpreted as correcting the value that would be
picked by the predictor number 7 of JPEG, with the error
made by this predictor in the Green plane. The accumulated
savings in the three color planes (24-bit pixels) with respect
to lossless JPEG are 2.61 bits/pixel for “girl” and 3.75
bits/pixel for “barbara.”

Table 4 shows results obtained with RGB representations
of two images from the JPEG set by compressing the Green
plane with an image compressor 205 using a predictor 207
operating according to (10) (“LOCO?1 with interplane
predictor”) compared to LOCO?I operating according to (2)
(“Plain LOCO?I”) and Lossless JPEG:

TABLE 4
LOCO?I with
inter-plane
Image Plain LOCO’I predictor Lossless JPEG
grl R 436 349 4.69
G 4.04 404 4.34
B 4.24 344 4.55
barb R 5.13 3.66 543
G 4.93 493 5.22
B 5.17 377 546

The system and method of the present invention is further
adaptable to conform to near-lossless compression as
defined by the ISO/IEC/SC29/WG1 committee. The near-
lossless standard requires that there is a uniform bound e
(e.g., 1. 2,3, 7) on the difference between each original pixel
and its decoded version.

FIG. 14 is a block diagram showing the configuration of
an image compressor/decompressor system having a pre-
processor 1401 prior to an image compressor 205'. The
image compressor 205 is of the same design and operates
like the image compressor 205. The preprocessor introduces
the allowed error. Thus, the error is transparent to the image
compressor 205", which operates in a lossless scheme.

The pre-processor 1401 is a scalar quantization that maps
each pixel value into one of approximately A/(2e+1}) values.
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thus reducing the size of the input alphabet A. More
specifically, according to one embodiment each pixel value
in the original image is mapped into

(1)

xi
2e+1 1

yi=l

Subsequent to the mapping of all pixels, x,, in the image
to corresponding values y, the image compressor 205’ com-
presses the image y according to the procedure described for
image compressor 205 into compressed image y'.

The corresponding decompressor 1201' is of similar
design and operates according to the same method as image
decompressor 1201, described above in conjunction with
FIG. 12. The decompressor 1201' losslessly decompresses y'
into image y according to the procedure described above for
image decompressor 1201.

The image decompressor 1201’ is followed by a post-
processor 1403, The post-processor 1303 is a scalar deguan-
tizer and performs a reconstruction mapping according to

x=p(2erl)re 12)

The absolute value Ix—x'l of the reconstruction error is
upper-bounded by e, because X' is the positive integer closest
to x and congruent to e mod (2e+1). With (12) large values
of y might be mapped to values X' greater than A—1. in which
case X' is truncated to A—1.

In another near-lossless embodiment of the present
invention, the pre-processor 1401 maps each pixel value x;
into
xite (13)

2e+1 1

yi=L

In this alternative, the corresponding reconstruction map-
ping performed by the post-processor 1403 according to

X'=y{2e+1). (14)

In this embodiment, x'; is the positive integer closest to x
and congruent to 0 mod (2e+1). In the event of an “over-
flow™ the post-processor 1403 truncates excessive values to
A-1.

FIG. 15 is a block diagram of a computer system 1501
incorporating the image compressor 205 and image decom-
pressor 1201. The computer system 1501 has a central
processing unit 1503 connected to one or more image
sources 1505, The image sources 1505 may include devices
such as digital cameras and scanners. The computer system
1501 may also be connected to computer networks, such as
local area networks, the Internet, or online services, via
network connections 1507 (e.g., via direct connections to
networks or via modem). The CPU 1503 transmits images
from the image sources 1505 to the image compressor 205
which compresses the image according to the method
described above.

The CPU 1503 is further connected to storage devices
1509, e.g.. memories (both for storage of images and other
data), disk drives, and tape units. Subsequent to the com-
pression of the images, the CPU 1503 may transmit images
to these storage devices 1509, Alternatively, the CPU 1503
may direct the images to the network connections 1507.

The computer system 1501 may also decompress com-
pressed images for display. The CPU may, for example.
obtain a compressed image via the network conmection
1507. The CPU 1503 directs such compressed images to the
image decompressor 1201 which decompresses the image
according to the method described above for image decom-
pression. The CPU 1503 is further connected to a display
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1511, e.g., a cathode-ray tube or flat-panel display. The CPU
1503 directs decompressed images for display on the display
1511.

In one embodiment, the image compressor 205 and the
image decompressor 1201 is implemented as computer
instructions operable to direct the operations of the CPU
1503. In such a case the image compressor 205 and image
decompressor 1201 are stored in one of the storage devices
1509 and are executed by the CPU 1503 to compress and
decompress images according to the methods of the present
invention.

In an alternative embodiment the image processor 205
and image decompresor 1201 are special purpose hardware
devices, e.g., image processing accelerators, attached to the
CPU 1503 as auxilliary devices.

In certain applications, a computer system 1501 may need
only be able to decompress images and not to compress
images, and vice versa. In such cases either the compressor
205 or decompressor 1201 may be absent from the computer
system 1501.

As a person skilled in the art will realize that numerous
modifications and changes may be made to the present
invention, it is not desired to limit the invention to the exact
construction and operation as illustrated and described.
Hence, all suitable modifications and equivalents may be
resorted to as falling within the scope of the invention.

We claim:

1. A method of predicting the value of a pixel in a
digitized image comprising the steps of:

determining a context of said pixel wherein said context

comprises a first pixel located north of said pixel and
having a value a. a second pixel located west of said
pixel and having a value b, a third pixel located
north-west of said pixel and having a value c, and a
fourth pixel located north-east of said pixel and having
a value d; and

determining a predicted value i,- .+, for said pixel accord-
ing to:

max(a’,b) ifa+b-c & max(d, b)

Fwm={ min(@,b) ifa+b-c S min(d,b)
a+b-c  otherwise
where,

(a+dy2 ifla—di<dla—cl A sign(a— d) - sign(c — a)
a=
a otherwise.

2. A method of operating a computer to losslessly com-
press digitized images comprising the steps of:
a. retrieving an image to compress from an input device;
and
b. encoding a pixel in the image by:

b.1 directing said computer to use a template of pixels
adjacent to the pixel in said image to determine a
predicted value for the pixel;

b.2 comparing the predicted value and the actual value,
thereby producing a residual;

b.3 determining a context of the pixel from values of
gradients between pixels adjacent to said pixel and
quantizing the gradients; and

b.4 retrieving a code corresponding to the residual from
a context-specific Huffman table.

3. The method of claim 2, further comprising the step of:

¢. transmitting the codes to a decoder.

4. The method of claim 2 wherein said computer deter-
mines said context-specific Huffman tables by for each
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context determining the distribution of error values and
using said distribution for said each context to build said
context-specific Huffman table.

5. The method of claim 2 wherein the step of determining
said context further comprises quantizing said gradients into
approximately equiprobable regions.

6. The method of claim 5 wherein said quantizing step
comprises the steps of for each gradient determining within
which of a predetermined number of regions said gradient is.

7. The method of claim 2 wherein each context-specific
Huffman table contains codes corresponding to each mem-
ber of an alphabet of encodable events, and wherein for at
least one context the alphabet of encodable events is
extended to include events that are not prediction residuals.

8. The method of claim 2 wherein said context-specific
Huffman tables are static and wherein said computer
encodes said image and said decoder decodes said image
using said static context-specific Huffman tables.

9. The method of claim 2 wherein each quantized context
corresponds to a context vector of quantized gradients,
further comprising the steps of:

for each non-zero context vector, creating a context pair

having a first member corresponding to said non-zero
context and a second member corresponding to the
negative of said non-zero context; and

for each pixel occurring in the first member of a context

pair, encoding the negative of the residual.

10. The method of claim 2 further comprising the steps of:

further subdividing at least one of said quantized contexts

into a plurality of sub-quantized contexts;

for each pixel occurring in one of said at least one of said

subdivided quantized contexts. determining a particular
sub-quantized context of said sub-divided quantized
context wherein said pixel occurs in said particular
sub-quantized context; and

retrieving a code corresponding to said residual from a

context-specific Huffman table corresponding to said
particular sub-quantized context.

11. The method of claim 9 wherein said at least one of said
quantized context is a quantized context corresponding to
quantized gradients of zero.

12. The method of claim 2 further comprising the steps of:

for each quantized context, building a context specific

Huffman table corresponding to said quantized context.

13. The method of claim 12 wherein said step of building
quantized context specific Huffman tables includes the step
of excluding codes for particuiar residual values; and further
comprising the steps of:

building a non-context specific Huffman table containing

codes for said particular residual values; and

for each residual value for which a context-specific Huff-

man table does not contain a code, retrieving a code
from said non-context specific Huffman table for said
particular residual values.

14. The method of claim 13 further comprising the step of:

transmitting the code to a decoder;

for each residual value for which a context-specific Huff-

man table does not contain a code, transmitting a
special value to the decoder indicating that the code for
said residual value was retrieved from said non-context
specific Huffman table.

15. The method of claim 13 wherein said particular
residual values are infrequently occurring residual values.

16. The method of claim 13 wherein said particular
residual values are large residual values.

17. The method of claim 2 wherein said context of said
pixel comprises a first pixel located north of said pixel and
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having a value a, a second pixel located west of said pixel
and having a value b, a third pixel located north-west of said
pixel and having a value c, and a fourth pixel located
north-east of said pixel and having a value d, and said step
b of determining a predicted value X,,, according to:

max(a', b) ifa+b-c 2 max(a, b)

X =4{ min(g,b) ifa+b-cSmin(d,b)
a+b—c  otherwise
where,

(@+dy2 ifla-dl<4dla—clAssign(a—d)— sign(c — a)
a otherwise.

a'= [
18. The method of claim 2 wherein said codes retrieved
from said context-specific Huffman tables are Golomb-Rice
codes.
19. The method of operating a computer to compress
digitized images of claim 2 further comprising the steps of:
c. building a Huffman table for each quantized context;
d. transmitting said quantized context specific Huffman
tables to a decoder;
e. retrieving a code corresponding to at least one of said
residuals from a context-specific Huffman table; and
f. transmitting said code to a decoder.
20. The method of claim 19 wherein said step f of
transmitting said context specific Huffman tables further
comprises the steps of:
transmitting a first indicator indicating whether fixed
Huffman tables should be used for decoding or whether
Huffman tables are transmitted to said decoder; and
if said first indicator indicates that Huffman tables are
transmitted:
for each said Huffman table:
transmitting a description of a binary tree for said
Huffman table;

transmitting a second indicator of whether the
residual values in said Huffman table follows a
presumed order; and

if such Huffman table follows said presumed order,
for each pair of residual values consisting of a
positive residual and the negative of said positive
residual, transmitting an indicator of whether the
positive residual is more probable than the nega-
tive of said positive residual; and

if such Huffman table does not follow said presumed
order, transmitting a sequence of symbols.

21. The method of claim 20 further comprising the steps
of:

(a) determining which alternative selected from transmit-
ting Huffman tables and using fixed Huffman tables
results in a more efficient compression of said image;

setting said first indicator according to said determining
step (a); and

if sending Huffman tables is more efficient:

(b) determining which alternative selected from using a
presumed sequence order and sending the sequence
order results in a more efficient compression of said
image; and

setting said second indicator according to said deter-
mining step (b).

22. The method of claim 20 wherein said context-specific
Huffman tables do not include codes for infrequently occur-
ring symbols, and further comprising the steps of:

generating non-context specific Huffman tables for said
infreqently occurring symbols;
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for such infrequently occurring symbols, transmitting an
escape code indicative of such a non-context specific
Huffman table is used for retrieving a code correspond-
ing to said infrequently occurring symbol; and
for each context specific Huffman table, transmitting a
location for said escape code in a sequence of symbols
used in constructing said Huffman table.
23. The method of claim 19 wherein each pixel value is
a member of a first alphabet of values, further comprising
the step of:
mapping each pixel value of said image to a value in a
second alphabet, wherein said second aiphabet is a
subset of said first alphabet; and

mapping each decoded pixel value in said second alphabet
to a value in a third alphabet.
24. The method of claim 23 wherein said mapping intro-
duces an error of uniform bound e and each pixel value x; is
mapped to a value y; according to a relationship:

Xi
Lyi=gr

and each decoded pixel value y; is mapped to a value X',
according to the relationship:

*y(2e+1)re.

25. The method of claim 23 wherein said mapping intro-
duces an error of uniform bound e and each pixel value x; is
mapped to a value y; according to a relationship:

xXi+e
Ly=gerr

and
each decoded pixel value y; is mapped to a value X
according to the relationship:

x'=yf2e+1).

26. An image compression encoder wherein for each pixel
in an image there is a context based on the pixels that have
been encoded prior to said each pixel, having an encoder
comprising:

a. an image buffer containing at least one digitized image;

b. a pixel and context generator connected to said image
buffer and operable to retrieve a value of a pixel in said
image buffer and a context of said pixel;

¢. a predictor connected to said context generator and
operable to predict the value of said pixel based on said
context;

d. a subtractor connected to said pixel and to said pre-
dictor and operable to subtract said pixel value from a
corresponding predicted value, thereby obtaining an
error value for said pixel;

e. a table-memory for storing a plurality of context-
specific Huffman tables; and

f. a code generator connected to said pixel and context
generator and to said context-specific Huffman tables
and operable to retrieve a code based on said context,
said pixel value, and said context-specific Huffman
table corresponding to said context;

wherein said error value is used by said code generator to
retrieve said code from said context-specific Huffman
table.

27. The image compression encoder of claim 26 further

comprising a context quantizer connected to said context
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and operable to quantize the context of a pixel, wherein said

code generator uses said quantized context to select a

context-specific Huffman table from which to retrieve said

code.

28. The image compression encoder of claim 27 wherein
said quantized context determinator determines gradients in
said context and determines in which of several regions said
gradients fall.

29. The image compression encoder of claim 28 wherein
said context consists of a pixels to the west, northwest,
north, and northeast of said pixel, and said image buffer is
operable to selectively output values corresponding to said
context pixels, and said quantized context determinator
comprises:

a. a first subtractor connected to input said west and
northwest pixel outputs, and operable to output a first
difference, whereby said subtractor outputs a first gra-
dient;

a second subtractor connected to input said northwest

and north pixel outputs, and operable to output a second

difference, whereby said subtractor outputs a second
gradient;

c. a third subtractor connected to input said northeast and
north pixel outputs, and operable to output a third
difference, whereby said subtractor outputs a third
gradient;

. a first, a second, and a third quantizer, each having an
input connected to said gradient outputs of said first,
second, and third subtractor, respectively, wherein each
contains a first comparator connected to said input
gradient and to a threshold value and a second com-
parator connected to said input gradient and the nega-
tive of said threshold value, whereby said quantizer
outputs a quantized gradient, and where said three
quantized gradients form a quantized context.

30. The image compression encoder of claim 29 wherein
for each gradient region represented by a positive range has
a corresponding negative range and wherein said quantized
context determinator further comprises a mapping table for
mapping each context having a quantized gradient indicative
of a negative range to a corresponding context with the same
gradient having a positive range.

31. The method of claim 30 wherein said alphabet exten-
sions encodes a length of consecutive constant prediction
residuals. .

32. The method of claim 31 wherein the context of a pixel
is computed from at least one gradient between two adjacent
pixels, and comprising the further step of:

for each pixel where all said at least one gradient are zero,

encoding the number of consecutive such pixels.

33. The method of claim 31 wherein a pixel follows said
length of consecutive constant prediction residuals and
comprising the further step of:

for the first pixel following said length of consecutive

constant prediction residuals, retrieving a code for the
residual for said first pixel following said length of
consecutive constant prediction residuals from a non-
context specific Huffman table that does not include
said constant prediction residual.

34. The image compression encoder/decoder system of
claim 6 further comprising:

at least one context-specific Huffman table having an

alphabet of encodable events extended to include
events that are not prediction residuals.

35. The image compression encoder/decoder system of
claim 34 wherein said alphabet extension is a length of
consecutive constant prediction residuals.

36. The image compression encoder/decoder system of
claim 34 wherein for each pixel the context of said pixel is
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determined from at least one quantized gradient between at
least two neighboring pixels;

for all contexts for which all said quantized gradients are
zero, said context-specific Huffman table for the num-
ber of consecutive such pixels.

37. The image compression encoded decoder system of

claim 6 wherein said Huffman tables are static.

38. The image compression encode/decoder system of
claim 27 wherein said context-quantizer produces a first
index, further comprising:

a context sub-quantizer connected to said context and
operable to quantize the context of a pixel at a finer
resolution than said quantizer and to produce a second
index; and

a multiplexer connected to said context quantizer and to
said context sub-quantizer operable to select one of said
first and second indexes.

39. The image compression encode/decoder system of
claim 26 wherein said table memory contains a plurality of
context specific Huffman tables that do not contain codes for
particular residual values, and wherein said table memory is
further operable to store a non-context specific Huffman
table containing codes for said particular residual values.

40. The image compression encode/decoder system of
claim 39 wherein said particular residual values are infre-
quently occurring residual values.

41. The image compression encode/decoder system of
claim 39 wherein said particular residual values are large
residual values.

42, The image compression encode/decoder system of
claim 26 further comprising:

a coding table generator connected to said table memory
and operable to generate said context-specific Huffman
tables.

43. The image compression encode/decoder system of
claim 42 wherein said coding table generator is operable to
generate Golomb-Rice codes.

44. The image compression encode/decoder system of
claim 26 wherein each pixel has a value in a first alphabet
and further comprising:

a preprocessor for mapping each pixel value in said image
into a value in a second alphabet. wherein said second
alphabet is a subset of said first alphabet.

45. The image compression encode/decoder system of
claim 43 wherein said preprocessor introduces an error of
uniform bound e and each pixel value x, is mapped to a value
y; according to the relationship:

X
=l &
and each decoded pixel value y; is mapped to a value X',
according to the relationship:

x'=y(2e+1)re.

46. The image compression encode/decoder system of
claim 43 wherein said preprocessor introduces an error of
uniform bound ¢ and each pixel value x, is mapped to a value
y; according to the relationship:

Xite

)’i=LW— J;

and each decoded pixel value y; is mapped to a value X',
according to the relationship:

x'=y{2e+1).



